\qquad

Practice Problems: Sex Linked Genes

****In fruit flies, eye color is a sex-linked trait. Red is dominant to white ****

1. What are the sexes and eye colors of flies with the following genotypes:

2. What are the genotypes of these flies:
white eyed, male \qquad white eyed, female \qquad
red eyed female (heterozygous) \qquad red eyed, male \qquad
3. Show the cross of a white eyed female $X^{r} X^{r}$ with a red-eyed male $X^{R} Y$.

How many are:
white eyed, male \qquad
white eyed, female \qquad
red eyed, male \qquad
red eyed, female \qquad
4. Show a cross between a pure red eyed female and a white eyed male. What are the genotypes of the parents:
\qquad
\& \qquad
How many are: white eyed, male \qquad white eyed, female \qquad red eyed, male \qquad red eyed, female \qquad

5. Show the cross of a red eyed female (heterozygous) and a red eyed male. What are the genotypes of the parents?
\qquad \& \qquad
How many are:
white eyed, male \qquad
white eyed, female \qquad
red eyed, male \qquad
red eyed, female \qquad
Math: What if in the above cross, 100 males were produced and 200 females. How many total red-eyed flies would there be?

Human Sex-Linkage

In humans, hemophilia is a sex-linked trait. Females can be normal, carriers, or have the disease. Males will either have the disease or not (but they won't ever be carriers)

$$
\begin{aligned}
& X^{H} X^{H}=\text { female, normal } \\
& X^{H} X^{h}=\text { female, carrier } \\
& X^{h} X^{h}=\text { female, hemophiliac }
\end{aligned}
$$

$$
X^{H} Y=\text { male, normal }
$$

$$
X^{h} Y=\text { male, hemophiliac }
$$

6. Show the cross of a man who has hemophilia with a woman who is normal (not a carrier).

How many children will have the disease? \qquad
7. A woman who is a carrier marries a normal man. Show the cross:

How many children will have the disease? \qquad
What is the sex of the child with the disease? \qquad
8. A woman who has hemophilia marries a normal man.

How many children will have the disease? \qquad
What is the sex of the child with the disease? \qquad
9. In cats, the gene for calico (multicolored) cats is codominant. Females that receive a B and an R gene have black and oRange splotches on white coats. Males can only be black or orange, but rarely calico. Show the cross of a female calico cat with a black male;

$$
\text { Female, calico }=X^{B} \quad X^{R} \quad \text { Male, black }=X^{B} Y
$$

How many offspring will be:
Female and calico \qquad Female and black \qquad Male and black \qquad Male and orange
\qquad Male and calico \qquad -
10. Show the cross of a female black cat and a male orange cat.

What percentage of the kittens will be calico and female? \qquad

What color will all the male cats be? \qquad

