Name			
manne			

Practice Problems: Sex Linked Genes

****In fruit flies, eye color is a sex-linked trait. Red is dominant to white **** 1. What are the sexes and eye colors of flies with the following genotypes: _____ X^RY ____ X^rX^r ____ $X^R X^r$ $X^R X^R$ 2. What are the genotypes of these flies: white eyed, male _____ red eyed female (heterozygous) _____ red eyed, male _____ white eyed, female 3. Show the cross of a white eyed female $X^r X^r$ with a red-eyed male $X^R Y$. How many are: white eyed, male _____ white eyed, female _____ red eyed, male ____ red eyed, female 4. Show a cross between a pure red eyed female and a white eyed male. What are the genotypes of the parents: How many are: white eyed, male white eyed, female red eyed, male _____ red eyed, female ____ 5. Show the cross of a red eyed female (heterozygous) and a red eyed male. What are the genotypes of the parents? How many are: white eyed, male____ white eyed, female ____ red eyed, male ____ red eyed, female _____

Math: What if in the above cross, 100 males were produced and 200 females. How many total red-eyed flies would there be?

Human Sex-Linkage

In humans, hemophilia is a sex-linked trait. Females can be normal, carriers, or have the disease. Males will either have the disease or not (but they won't ever be carriers)

$$X^{H}X^{H}$$
 = female, normal $X^{H}Y$ = male, normal $X^{H}X^{h}$ = female, carrier $X^{h}Y^{h}$ = male, hemophilian $X^{h}X^{h}$

6. Show the cross of a man who has hemophilia with a woman who is normal (not a carrier).

How many children will have the disease?

7. A woman who is a carrier marries a normal man. Show the cross:

How many children will have the disease? _____

What is the sex of the child with the disease? _____

8. A woman who has hemophilia marries a normal man.

How many children will have the disease? _____

What is the sex of the child with the disease?

9. In cats, the gene for calico (multicolored) cats is codominant. Females that receive a B and an R gene have black and oRange splotches on white coats. Males can only be black or orange, but rarely calico. Show the cross of a female calico cat with a black male:

Female, calico =
$$X^B X^R$$
 Male, black = $X^B Y$

How many offspring will be:

Female and calico ____ Female and black ____ Male and black ____ Male and orange ____ Male and calico _____

10. Show the cross of a female black cat and a male orange cat.

What percentage of the kittens will be calico and female?

What color will all the male cats be?

